

Enhanced Grinder Framework with Scheduling and
Improved Agents

Shilpa Sharma1, Meenakshi Sharma2

1M.Tech. C.S.E,

2H.O.D CSE
1,2S.S.C.E.T, Pathankot, India

Abstract: - Researchers are still trying to find effective ways to
test web application. There are many techniques and tools for
web application testing. In this dissertation, we have enhanced
grinder performance tool with scheduling and improved Agents.
The Grinder makes use of a powerful distributed Java load
testing framework that allows simulation of multiple user loads
across different “agents” which can be managed by a centralized
controller or “console”. A grinder agent/worker processes exits
once Grinder Console process ends session. We have added
scheduler which works as a service on Grinder agent systems.
This add-on will help users to start grinder from console itself.
Grinder does not provide the way for distributing the agents so
they must be deployed and started manually in all machines.
There is no way that these agents keep running at back end. In
enhanced grinder load increases in steps as done in J meter.
Previous Grinder does not allow addition of heterogeneous
agents to a grinder test, we will be removing this limitation by
making Grinder agents use specified configuration in agents’
properties while seeming to grinder Console. Enhanced grinder
allows heterogeneous workers capability.

Keywords: Load testing for web application, Performance testing,
Grinder.

1. INTRODUCTION
1.1 Software Testing
 Software testing is an important stage in software life cycle.
Testing is a process of evaluating a system or its components
with the intent to find that whether it satisfied requirements or
not. This activity result in the actual expected and difference
between their results. In simple words testing is executing a
system in order to identify any gaps, errors or missing
requirements in contrary to the actual desire or requirements.
Different companies have different designation for people
who test the software on the basis of their experience and
knowledge such as software tester, software quality assurance
engineer and QA Analyst etc. Testing is applied to find bugs
and used to calculate software bugs density. In typical
software projects, the percentages of software testing
workload are about 40%.
1.2 Software performance testing
Performance testing is generally executed to determine how a
system or sub-system performs in terms of responsiveness and
stability under a particular workload. It can also serve to
investigate measure, validate or verify other quality attributes
of the system, such as scalability, reliability and resource
usage. In software engineering, performance testing is in

general testing performed to determine how a system performs
in terms of responsiveness and stability under a particular
workload. It can also serve to investigate measure, validate or
verify other quality attributes of the system, such as scalability,
reliability and resource usage. Performance testing is a subset
of performance engineering, an emerging computer science
practice which strives to build performance into the
implementation, design and architecture of a system.
Performance testing can be performed across the web, and
even done in different parts of the country, since it is known
that the response times of the internet itself vary regionally. It
can also be done in-house, although routers would then need
to be configured to introduce the lag what would typically
occur on public networks.
1. 3 Load testing for web application
As the web application become popular, it is an urgent issue to
how to test them. Web applications are popular due to the
ubiquity of web browsers, and the convenience of using a web
browser as a client. A web application performance tool
(WAPT) is used to test web applications and web related
interfaces [2]. It helps to identify the maximum operating
Capacity of an application as well as any bottlenecks and
determine which element is causing degradation. As the
network technology development and increase of web
application users pay more and more attention to system
performance. Since the web application mixed lots of
technology such as HTML, Java, Java Script, database
network and EJB result in the testing for web application
becomes more complex and difficulty, so the load testing for
web application is suggested. Load testing lets you measure
your website's QOS performance based on actual customer
behavior.
1.4 Grinder
The Grinder is a Java load testing framework that makes it
easy to run a distributed test using many load injector
machines. Grinder is an free open source desktop application
designed to load test functional behavior and measure
performance [1]. Grinder scripts are written in Jython
programming language. The Grinder is a Java load testing
framework making it easy to orchestrate activities of a test
scripts in many processes across many machines using
graphical console application.
Key features:
1) Generic Approach Load tests anything that has a Java

API. This includes common cases such as HTTP web

Shilpa Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 55-59

www.ijcsit.com 55

servers, SOAP and REST web services, and application
servers (CORBA, RMI, JMS, EJBs), as well as custom
protocols.

2) Flexible Scripting Test scripts are written in the Jython
and Closure language.

3) Distributed Framework A graphical console allows
multiple load injectors to be monitored and controlled
and provides centralized scripts editing and distribution.

4) Mature HTTP Support Automatic management of
client connections and cookies. SSL Proxy aware.
Connection throttling. Sophisticated record and replay of
the interaction between a browser and a web site.

1.4.1 The Grinder processes
The Grinder is a JAVA framework for running test scripts
across a number of machines. It is free open source under a
BSD-style License and supports large scale testing using
distributed load injector machines. The main selling point of
Grinder however is that it is lightweight and easy to use. With
grinder there are no licenses to buy or large environments to
set up. The Grinder framework is comprised of three types of
process (or program): worker processes, agent processes, and
the console.
The responsibilities of each of the process types are:
 Worker processes

 Each worker process can run many tests in parallel
using a number of worker threads.

 Agent processes
 Long running process that starts and stops worker

processes as required.
 Maintains a local cache of test scripts distributed

from the console.
 The Console

 Coordinates the other processes.
 Collates and displays statistics.

Agent processes
When an agent is started, it attempts to connect to the
console. If it can connect, it will wait for a signal from the
console before starting worker processes. Otherwise, the
agent process will start a number of worker processes as
specified by its local grinder. Properties file. If the network
connection between the agent and the console is terminated,
or the console exits, the agent will exit.
Worker processes
Worker processes are started by a controlling agent process.
The agent process passes each worker a set of properties that
control its behavior.

2. RELATED WORK
Researchers and practitioners are still trying to effective ways
to model and test Web applications. This paper proposes a
system-level testing technique that combines test generation
based on finite state machines with constraints. We use a
hierarchical approach to model potentially large Web
Applications. The approach builds hierarchies of Finite State
Machines (FSMs) that model subsystems of the Web
applications, and then generates test requirements as

subsequences of states in the FSM. These subsequences are
then combined and refined to form complete executable tests.
The constraints are used to select a reduced set of inputs with
the goal of reducing the state space explosion otherwise
inherent in using FSMs [18]. In order to deliver quality
assured software and avoid potential costs caused by unstable
software, software testing is essential in software lifecycle.
Load testing is one of the testing types with high importance.
It is usually accompanied by performance monitoring of the
hosting environment. In the case of web applications which
are today widely used, one fact is obvious: most of web
applications are public and used by vast number of users,
which are making a considerable traffic load on hosting
environments and web applications [19] . Load testing of IT
projects attempts to ensure that the application meets SLA
before it is actually launched in the production environment.
But, limitations of load testing are its applicability for large
number of users, lack of knowledge about the exact
production workload characteristics etc. This paper proposes
an extrapolation strategy for load testing results which allows
one to obtain throughput and response time of an application
for large number of users [20]. Load testing and performance
monitoring become facilitated with existing tools aimed for
load testing and performance monitoring. Web application
script crashes and malformed dynamically generated web
pages are common errors and they seriously impact the
usability of Web applications [21]. Static analysis tools for
webpage validation cannot handle the dynamically generated
pages that are Ubiquitous on today’s Internet. They present a
dynamic test generation technique for the domain of dynamic
Web application, utilizes both combined concrete an
symbolic execution. Load testing of IT applications faces the
challenge of providing high quality test results that would
represent the performance in production like scenarios,
without Incurring high cost of commercial load testing tools
[22] . It would help IT projects to be able to test with a small
number of users and extrapolate to scenarios with much
larger number of users. Such an extrapolation strategy when
applied to mixture of application workloads running on a
shared server environment must take into consideration
application characteristics (CPU/IO intensive, memory
bound) as well the server capabilities. WS-TaaS, a load
testing platform for web services, which enables load testing
process to be as close as possible to the real running
scenarios. In this way, we aim at providing testers with more
accurate performance testing results than existing tools. WS-
TaaS is developed on the basis of our existing Cloud PaaS
platform: Service4 All [23] .
First, they briefly introduce the functionalities and main
components of Service4All. Second, we provide detailed
analysis of the requirements of Web Service load testing and
present the conceptual architecture and design of key
components. Third, they present the implementation details
of WS TaaS on the basis of Service4All. Finally, they
perform a set of experiments based on the testing of real web
services, and the experiments illustrate that WS- TaaS can

Shilpa Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 55-59

www.ijcsit.com 56

efficiently facilitate the whole process of Web Service load
testing. An extrapolation strategy that analyses a system
workload mix based on its service demand on various
resources and extrapolates its performance using simple
empirical modeling techniques. Moreover, its ability to
extrapolate throughput of an application mixture even if there
is a change in the mixture, can help in capacity planning of
the system [24.
Different performance testing tools Neo Load, WAPT and
Loadstar are compared in terms of their different performance
parameters results in different browsers [25]. Performance
parameters results generated by these performance testing
tools have been evaluated and analyzed. A comparative study
of open source web service testing tools with technical
overview and features. Comparison is made on several
quality factors including response time, throughput, and
usability. Tools are evaluated by collecting the sample web
services and collecting the test results [26].

3. METHODOLOGY USED
The Grinder is Java based load testing framework that makes
it easy to run a distributed test using many load injector
machines. There are a few limitations in grinder that make it
hectic to use these tools. We shall update grinder code to
update these problems and make grinder easy to use tools and
add some of flexibility to its usage.

1. For Grinder Agents: A grinder agent/worker
processes exits once Grinder Console process ends
session. We shall be adding scheduler which works
as a service on Grinder agent systems. This add-on
will help users to start grinder from console itself.

2. For Grinder Agent: Grinder does not provide the
way for distributing the agents so they must be
deployed and started manually on all machines. So
removing this limitation by increase the load in
steps.

3. For adding heterogeneous agents: Grinder does
not allow addition of heterogeneous agents to a
grinder test; we will be removing this limitation by
making Grinder agent use specified configurations
in Agent properties while seeming to Grinder
Console.

4. RESULTS AND DISCUSSION

The methodology of Grinder tool is implementing in Eclipse
Platform. It is written mostly in java. It can be used to
develop application in Java and by means of various plug-in
other programming language including Ada, C, C++,
COBOL, FORTRAN, Python, Haskell, JavaScript etc.

1. To add test scheduling capability in grinder.
Figure 4.1 is the actual screenshot of the code in which
scheduler is added, which works as a service on Grinder
agent systems.

Figure 4.1: Screen shot of code for adding scheduler

In Figure 4.1 we will add scheduler for 15 minute. This add-
on will help users to start grinder from console itself.

Output:
Figure 4.2 is screen shot of Agent output when scheduler is
added. Each worker process sets up a network connection to
the console to report statistics. Each agent process sets up a
connection to the console to receive commands, which it
passes on to its worker processes. The console listens for both
types of connection on a particular address and port. By
default, the console listens on port 6372 on all local network
interfaces of the machine running the console.

Figure 4.2: Screen shot of agent output of adding scheduler

Shilpa Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 55-59

www.ijcsit.com 57

2. To Enhance Grinder to increase load on application in
steps

Figure 4.3 is the actual screen shot of the code in which load is
increased on application in steps. In Enhanced Grinder load
increased gradually.

Figure 4.3: Screen shot of code for increasing the load in steps

Output
Figure 4.4 is Screen shot of agents output of increasing load
in steps . The differnce between adding users is 20 in which
load increased gradually. By default, the console listens on
port 6372 on all local network interfaces of the machine
running the console.

Figure 4.4: Screen shot of Agent output for Increasing the load in steps

3. To add heterogeneous workers capability.
 In order to add the hetrogenous workers capablities I changed
the updated grinder properties. The Grinder worker and agent
processes are controlled by setting properties in the grinder.
Properties file. All properties have default values.

Enhanced Grinder can run in different configuration. In which
abstract layer is add between agent and cosole so that proper
communication is done.

Figure 4.5:- Screen shot of changing grinder property

In Figure 4.5, we change configuration property of Grinder 3
times, every time agent will be started.

Output
Figure 4.6 is the snap shot of heterogeneous workers
capability in grinder. Enhanced grinder can run in different
configurations. In which abstract layer is set up between
agent and console for communication.

Figure 4.6: Screen shot of heterogeneous worker capability in Grinder

Shilpa Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 55-59

www.ijcsit.com 58

5. CONCLUSION
Enhanced Grinder testing tool helps in easily managing
testing suites and requires lesser manual intervention. This
help in reducing efforts for performance testing. In Grinder
3, there is no scheduling possibility and load can be increased
gradually. When an agent is started, it attempts to connect to
the console. If the network connection between the agent and
the console is terminated, or the console exits, the agent will
exit. Enhanced grinder removes this limitation by adding
scheduling capability. The scheduler will start Agents
automatically before test starts. Grinder agents need to be
started manually each time starting a load testing suite. It
does not provide the way for distributing the agents so they
must be deployed and started manually on all machines.
There is no way that these agents keep running at back end.
So removing this limitation by increasing the load in steps as
done in Jmeter. Jmeter is also open source Java application
designed to load test functional behavior and measure
performance. Grinder does not allow heterogeneous workers
capability. So remove this limitation by making Grinder
agent use specified configurations in Agent properties while
seeming to Grinder Console. Enhanced grinder can work in
different configuration from which heterogeneous workers
can add. Enhanced Grinder allows arbitrary branching and
looping and makes test result directly available different test
paths to be taken depending on the outcome of each test. It
can use the full power of Jython or Closure to create dynamic
requests of arbitrary complexity. Enhanced Grinder tool, the
most required features is support for performing load test
process steps with emphasis on recording, distributing tests,
HTTPS and AJAX support.

6. FUTURE SCOPE
 Grinder testing tool supports java based applications only, it
can be enhanced to increase scope of tool and use with other
technologies also. This tool is sufficient for any Web
application load testing although higher level of technical
expertise is needed to properly use them. Regarding the
results analysis, the Grinder provides just log files, so in order
to get more though analysis Grinder analyzer tool can be
used.

REFERENCES
1. The Grinder website, http://grinder.sourceforge.net/
2. Load Testing. http://en.wikipedia.org/wiki/Load testing.
3. H. Ashram, ―Performance extrapolation in discrete-event systems

simulation,ǁ Int. Journal of Systems Science, vol. 27, no. 9, 1996, pp.
863-869.

4. Nageswaran , S. Performance Tools Comparison [Online]. Testing
reflections .com. Available: http://www.testingretlections.com/, 2005.

5. S. Erlbaum, G. Rothermel, S. Karre, and M. Fisher, "Leveraging user
session data to support Web application testing," IEEE Transactions on
Software Engineering, vol. 31, no. 3, 2005, pp.187-202.

6. Andrews, J. Offutt, and R . Alexander, “Testing web applications by
modeling with FSMs,” Software and Systems Modeling, vol. 4, no. 3,
pp. 326– 345, Jul. 2005.

7. Barber, S. Choosing Performance Testing [Online].
Testingreflections.com. Available: http://www.testingreflections.coml
node /view /3939, 2006.

8. Nageswaran, S. Performance Tools Comparison [Online]. Testing
reflections. Com. Available:
http://www.testingretlections.com/node/view /1756 , 2006.

9. Barber, S., Beyond Performance Testing, Rational Developer Network.
Perf Test Plus Inc. Florida, United States of America, 2007.

10. Deng Xia openg, etc. “Progress in Testing for web Applications [J],
Journal of Computer Research and Development, 44(8):1273- 1283,
2007.

11. Microsoft Corporation. Quantifying End-User Response Time Goals -
in Performance Testing Guidance for Web Applications.
Microsoft Press. United States of America, 2007 .

12. S. Sam path, S. Sprenkle, E. Gibson, L. Pollock, and A. Souter,
"Applying concept analysis to user-session-based testing of Web
applications," IEEE Transactions on Software Engineering, vol. 33,
no.10, 2007, pp.643-658.

13. Vinod, P, “Open Source & Commercial Performance Testing Tools”
[Online]. Accenture. Available:

14. Molyneaux, I, Choosing the Right Performance Testing Tools - in the
Art of Application Performance Testing. O'Reilly Media. United States
of America, 2009.

15. Pu yumig, Xu mingna,” Load Testing for Web Application”, the 1st
International conferences on information Sciences and Engineering
(ICISE2009).

16. A. Khanapurkar , S. Malan, and M. Nambiar, ―A Framework for
Automated System Performance Testing,ǁ in Proceedings of the
Computer Measurements Group’s Conference, 2010.

17. J. Križaniü, A. Grguriü , M. Mošmondor , P. Lazarevski, “Load testing
and performance monitoring tools in use with AJAX based web
application”, Ericsson Nikola Tesla d.d. Krapinska 45, Zagreb, Croatia,
MIPRO 2010, May 24-28, 2010.

18. Dr. S. M. Afroz , N. Elezabeth Rani and N. Indira Priyadarshini,
“Web Application– A Study on Comparing Software Testing Tools”,
International Journal of Computer Science and Telecommunications,
Volume 2, Issue 3, June 2011.

19. Subhasri Dutta gupta, Manoj Nambiar,” Performance Extrapolation for
Load Testing Results of Mixture of application”, UK Sim 5th European
Symposium on Computer Modeling and Simulation”, 2011.

20. S. Dutta gupta, and R. Mansharamani, ―Extrapolation Tool for Load
Testing Resultsǁ, Proc. of Int. Symp. on Performance Evaluation of
Computer Systems and Telecommunication Systems, SPECTS 2011.

21. M. Yan, H. Sun, X. Wang and X. Liu, Building a TaaS Platform for
Web Service Load Testing, IEEE International Conference on Cluster
Computing 2012, Sep 2012.

22. Minzhi Yan, Hailing Sun, Xu Wang, Xuedong Liu, “WS- TaaS: A
Testing as a Service Platform for Web Service Load Testing”, IEEE
18th International Conference on Parallel and Distributing Systems,
school of Computer science and Engineering. Beijing University,
Beijing, China, 2012.

23. Muhammad Dhiauddin Mohamed Suffiani, Fairul Rizal Fahrurazi,
“Performance Testing: Analyzing Differences of Response Time
between Performance Testing Tools”, in proceeding of International
Conference on Computer & Information Science (ICCIS), 2012.

24. Sneha Khoria and Pragati Upadhyay, “Performance evaluation and
comparison of software testing tools”, VSRD International Journal of
Computer Science & Information Technology, Vol. 2 No. 10, October
2012.

25. Rina, Sanjay Tyagi,” A Comparative Study of Performance Testing
Tools”, International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 3, Issue 5, May 2013.

26. Shariq Husain, Zhao shun Wang, Ibrahim Kalil Tour and Abdoulaye
Diop, “Web Service Testing Tools: A Comparative Study”, IJCSI
International Journal of Computer Science Issues, Vol. 10, Issue 1, No
3, January 2013.

Shilpa Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 55-59

www.ijcsit.com 59

